Федеральное государственное бюджетное учреждение науки Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук

Центр исследования полимеров

Перечень публикаций, подготовленных по результатам работ, выполненых с использованием научного оборудования ЦКП за 2020 год

№ п/п		Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
1.		научном журнале	with regular polydimethylsiloxan e backbone and poly-2-isopropyl-2-oxazoline side chains. 1. Synthesis, characterization and conformation in solution	urpolymj.2 020.110035	Milenin, Aleksei Ryzhkov, Evgeniya Talalaeva и др.	European Polymer Journal, 140, 2020		Scopus	polydimethylsiloxane backbone and side chains	публикации указано название ЦКП	7
2.		научном журнале	Carboxyl-Containing Polydimethylsiloxan es: Synthesis and Properties	10.32931/io 2011r	V. V. Gorodov, S. A. Milenin, N. V. Demchenko, A. M. Muzafarov	INEOS Open, 3, 2020	2658-5618	BAK; Ринц; Web of Science; Scopus		Да (если в тексте публикации указано название ЦКП или УНУ)	53

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
3.	1873481	научном	Charge photogeneration and recombination in single-material organic solar cells and photodetectors based on conjugated star-shaped donor-acceptor oligomers	rgel.2019.1 05588	Artur L. Mannanov, Petr S. Savchenko, Yuriy N. Luponosov, Alexander N. Solodukhin, Sergey A. Ponomarenko и др.	Organic Electronics, 78, 2020	1566-1199	BAK; Ринц; Web of Science; Scopus	ease of fabrication so that they are virtually free fr om a number of drawbacks of heterojunction organic solar cells. However,	Да (если в тексте публикации указано название ЦКП или УНУ)	6

№ π/π	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
4.		научном журнале	Effect of fused triphenylamine core in star-shaped donor-n-acceptor molecules on their physicochemical properties and performance in bulk heterojunction organic solar cells	yepig.2020.	Yuriy N. Luponosov, Alexander N. Solodukhin, Artur L. Mannanov, Petr S. Savchenko, Yury Minenkov и др.	Dyes and Pigments, 1, 2020		BAK; Ринц; Web of Science; Scopus	through π-conjugated terthiophene spacers and terminal hexyldicyanovinyl electron- withdrawing units is reported. Its physicochemical and photovoltaic properties	Да (если в тексте публикации указано название ЦКП или УНУ)	7

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы) 5	Издание, номер, год	ISSN / ISBN издания	издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	_	6		8	9	= -	11
5.	1873479		End group tuning in small molecule donors for non-fullerene organic solar cells		Jie Guo, Dmitry O. Balakirev, Chengjun Gu, Svetlana M. Peregudova, Sergei A. Ponomarenko и др.	Dyes and Pigments, 175, 2020	0143-7208	BAK; Ринц; Web of Science; Scopus	electron donating benzodithiophene core bridged through bithiophene п-spacer with terminal either dicyanovinyl (DCV-Me) or n-	Да (если в тексте публикации указано название ЦКП или УНУ)	8

N ₉ π/1		Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
6.	1873482	научном журнале	Excited state dynamics and exciton difusion in triphenylamine/dicy anovinyl push-pull small molecule for organic optoelectronics	1598-020-7 8197-2	Benedito A. L. Raul, Yuriy N. Luponosov, Wenyan Yang, Nikolay M. Surin, Olivier Douhéret и др.	Scientific Reports, 10, 2020	2045-2322	BAK; Ринц; Web of Science; Scopus	molecules have recently attracted substantial research attention due to their unique optoelectronic properties. Here, we investigate the excited state de-excitation dynamics and	Да (если в тексте публикации указано название ЦКП или УНУ)	10

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
7.	1874045	научном журнале	Fluorinated Thiophene- Phenylene Co- Oligomers for Optoelectronic Devices	sami.9b202 95	Andrey Yu. Sosorev, Vasiliy A. Trukhanov, Dmitry R. Maslennikov, Oleg V. Borshchev, Roman A. Polyakov и тд.	ACS Applied Materials & Interfaces, 12, 2020	1944-8244	Scopus	combining bright luminescence and efficient ambipolar charge transport. Thiophene- phenylene co-oligomers (TPCOs) are promising highly emissive materials with decent charge-	тексте публикации	9518

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
8.	1874521	научном журнале	Hydrolytic polycondensation of trimethoxymethylsil ane under ultrasonic irradiation	encom.202 0.05.025	Nikita G. Yakhontov, Olga B. Gorbatsevich, Alexandra A. Kalinina, Nina V. Demchenko, Valentina V. Kazakova и др.	Mendeleev Communications, 30, 2020		Scopus	trimethoxymethylsilane in the absence of catalyst and solvent under ultrasonic irradiation was performed, the effect of reagent ratio, power, temperature and	Да (если в тексте публикации указано название ЦКП или УНУ)	338

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
9.	1874087	научном журнале	Impact of N- substitution on structural, electronic, optical, and vibrational properties of a thiophene- phenylene co- oligomer	RA03343J	Vasiliy A. Trukhanov, Dmitry I. Dominskiy, Olga D. Parashchuk, Elizaveta V. Feldman, Nikolay M. Surin и др.	RSC Advances, 10, 2020	2046-2069	Scopus	be finely tuned via changes in their molecular structure. However, the relationship between the molecular structure, molecular packing, and (opto)electronic properties of the organic	Да (если в тексте публикации указано название ЦКП или УНУ)	28137

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
		журнале	In search of efficient solubilizing groups for liquid and luminescent oligo(phenylenethio phene) chromophores		Yuriy N. Luponosov, Dmitry O. Balakirev, Ivan V. Dyadishchev, Alexander N. Solodukhin, Marina A. Obrezkova	Journal of Materials Chemistry C, 47, 2020	2050-7534	Scopus	In this work, the synthesis of oligomers having rigid conjugated 4,4'-bis(2-thienyl)biphenyl fragment end-capped with various types of solubilizing groups (SGs), such as either alkyl or alkylsilyl or alkyl-oligodimethylsiloxane are reported. The comprehensive study of their thermal and optical properties as well as rheology in comparison to model highly crystalline oligomers with simple either hexyl or trimethylsilyl SGs allowed us to elucidate structure-properties correlations and find the most powerful type of SG in terms of liquefaction for them. It was revealed that oligomers with long and branched alkyl SGs still remain high crystallinity, whereas oligomers with alkyl-oligodimethylsiloxane SGs combine very low glass transition temperatures (up to -111 °C) with a residual crystallinity. The alkylsilyl SGs were found to be the most efficient, since the oligomers end-capped with trihexyl- and tri(2-butyloctyl)silyl SGs are liquid and have low values of both the glass transition temperature (up to -48 °C) and viscosity (up to 1.98 Pa·s). All the oligomers prepared have similar optical absorption/luminescence spectra and high values of photoluminescence quantum yield in solution (up to 90%) without a significant impact of the SG type on that. In the neat films, the type of SG has a huge impact on the shape and maxima of absorption and luminescence efficiency. Among this series of molecules, oligomers with alkylsilyl SGs demonstrate the highest values of photoluminescence quantum yield in the neat form (24% - 61%) and close to the solution optical characteristics, which indicate their strong capability to suppress aggregation of molecules in the bulk. Thus, for the first time liquid luminescent thiophene/phenylene cooligomers were reported and a solubilizing capability of some of the most perspective types of SG was comprehensively investigated and compared to each other. The results obtained can be used as a guideline for design of functional materials based on conjugated oligomers with a tunable and controllab		17080
	2.03.2024	±			Центр иссл	едования полимерон	код отчета:	1833859), Форма	properties in the neat state.		9 из 25

Nº 11/1	ı ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
111.	1A 1873824	научном			5 Nataliya Kildeeva, Anatoliy Chalykh, Mariya Belokon, Tatyana Petrova, Vladimir Matveev и др.	6 Polymers, 12, 2020	7 2073-4360	Scopus	biodegradability, exceptional film forming capacity, great mechanical strength, appropriate barrier property along with intrinsic antioxidant and antimicrobial features. Bifunctional reagent was used for producing water insoluble chitosan films. Biopolymeric films crosslinked by Genipin (Gp), which is a reagent of natural origin, should have high potential in food packaging. The influence of the ratio of functional groups in the chitosan-Gp system on film absorption in the visible and ultraviolet regions of the spectrum, sorption, physical, and mechanical properties of the films has been studied. The degree of chitosan crosslinking in the films obtained from solutions containing Gp was estimated using the experimental data on film swelling and water vapor sorption isotherms. It is demonstrated that crosslinking with genipin improves swelling, water resistance, and	да (если в тексте публикации указано название ЦКП или УНУ)	11 12
12.	1873752	научном	Influence of the Growing Flexible Shell on the Molecular Behavior of Hybrid Dendrimers	s.macromol .0c01453	Sergey A. Milenin, Georgy V. Cherkaev, Nina V. Demchenko, Elena S. Serkova, Irina Yu. Krasnova и др.	Macromolecules, 53, 2020	0024-9297	Web of Science; Scopus	dendrimers composed of a rigid aromatic core		9

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
13.	1874022	журнале	Large area free- standing single crystalline films of p-quinquephenyl: growth, structure and photoluminescence properties		V. A. Postnikov, A. A. Kulishov, N. I. Sorokina, M. S. Lyasnikova, A. E. Voloshin и др.	Crystals, 10, 2020		Scopus	Ministry of Science and Higher Education of the Russian Federation within the State	Да (если в тексте публикации указано название ЦКП или УНУ)	12
14.	1874524	научном журнале	Low-Modulus Elastomeric Matrices for Magnetoactive Composites with a High Magnetic Field Response		Kostrov S.A., Gorodov V.V, Sokolov B.O, Muzafarov A.M, Kramarenko E.Y.	Polymer Science - Series A, 62, 2020	0965-545X	Scopus	microparticles of 70, 75, and 80 wt % are	публикации указано название ЦКП	390

N II,	1 11)	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
15	18734	научном	Materials based on protein-contained chitosan-g-oligo- /polylactide copolymers synthesized through mechanochemical approach	atpr.2019.1 2.350	T.S. Demina, T.N. Popyrina, A.S. Kuryanova, E.V. Istranova, C. Grandfils и др.	Materials Today: Proceedings, 0, 2020	2214-7853	Scopus	copolymer synthesis is a promising way to produce macromolecules combining properties and advantages of polymers of different nature.	указано название ЦКП	3

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
16.	1874517	научном журнале	Multifunctional hydrophobic coatings based on siloxane polymers with branched perfluoroalkyl substituents: Fast, simple and ecologically safe synthesis in active media.	rganchem.2 020.121398	Drozdov F.V., Krapivko A.L., Cherkaev G.V., Gervits L.L., Yashtulov N.A. и др.	Journal of Organometallic Chemistry, 921, 2020	0022-328X	BAK; Ринц; Web of Science; Scopus	polyorganosiloxanes with 1,1,1,2,2,3,3-heptafluoro-4,4-bis(trifluoromethyl)pentyl (Rf = CF3CF2CF2C(CF3)2(CH2)3-) perfluoroalkyl substituents for the sake of hydrophobic	Да (если в тексте публикации указано название ЦКП или УНУ)	6

N9 π/1	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
17.	1874131	научном журнале	New functional metallosiloxanes with partially siloxy substituted metall atom and their use in silicone compositions	rganchem.2 019.121034	A.N. Tarasenkov, N.A. Tebeneva, M.S. Parshina, I.B. Meshkov, N.G. Vasilenko и др.	Journal of Organometallic Chemistry, 906, 2020		Scopus	metallosiloxanes containing M-OEt groups (where M is metal) has been developed. Compounds of iron, aluminum and zirconium	Да (если в тексте публикации указано название ЦКП или УНУ)	9

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
18.	1874171	научном журнале	New hybrid materials based on cyclophosphazene and polysiloxane precursors: Synthesis and properties	olymer.201	Khanin D.A., Kononevich Yu.N., Temnikov M.N., Morgalyuk V.P., Vasil'ev V.G. и др.	Polymer, 186, 2020	0032-3861	Scopus	morphology based on cyclotriphosphazene and polysiloxane precursors were obtained by the thiol-ene radical addition. A series of samples such as aerogels with various density, a	Да (если в тексте публикации указано название ЦКП или УНУ)	8

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
19.	1871826	журнале	the humid air by two-layer LangmuirSchaefer OFETS	nb.2020.12 8609	Askold A. Trul, Victoria P. Chekusova, Marina S. Polinskaya, Alexey N. Kiselev, Elena V. Agina	Sensors and Actuators B: Chemical, 321, 2020	0925-4005	Scopus	cost sensors for toxic gas detection is a challenging task for today. Here we present a novel simple and fast approach for fabrication of reusable gas sensors for NH3 and H2S realtime detection based on Langmuir-Schaefer (LS) monolayer organic field-effect transistors with an active layer modified by an additional metal-containing porphyrin receptor layer. The devices prepared worked at room temperature and were found to be highly sensitive to the presence of ammonia and hydrogen sulfide at concentrations lower than 1 ppm. They demonstrated the improvement of both limit of detection (down to ca. 60–70 ppb) and sensitivity in the air with relative humidity up to 60 % as compared to the LS monolayer devices without a receptor layer. Incorporation of the receptor layer on top of the LS semiconducting monolayer does not influence on its electrical performance, response and recovery times, while provides the device sensitivity enhancement as well as allows tuning the sensor selectivity. Impressive combination of the sensor high sensitivity and reproducibility with fast response and full recovery after finishing the analyte exposure enables utilizing the fabricated two-layer OFETs as chemo-sensors in real gas analyzing systems.	Да (если в тексте публикации указано название ЦКП или УНУ)	7
20.	1874437	научном журнале	Organoboron derivatives of stereoregular phenylcyclosilsesqui oxanes.		Anisimov A.A, Drozdov F.V, Vysochinskaya Y.S, Minyaylo E.O, Peregudov A.S и др.	Chemistry - A European Journal, 26, 2020	0947-6539	Scopus		Да (если в тексте публикации указано название ЦКП или УНУ)	11406

№ п/п		Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
21.		научном журнале	Polydiethylsiloxane Macroinitiators for the Synthesis of Block Copolymers	2023a	M. A. Obrezkova, E. V. Selezneva, N. V. Demchenko, M. Möller, V. M. Kotov	Ineos Open, 3, 2020	2658-5618	BAK; Ринц; Web of Science; Scopus	α,ω-dipotassiumoxypolydiethylsiloxane are synthesized by the anionic polymerization of hexaethylcyclotrisiloxane in the presence of n-		180
22.		научном журнале	Radiation-induced macrocycle cleavage in crown ether complexes with Sr (II) and Y(III) chlorides: A comparative study	adphysche m.2020.109 023	Sergey V. Nesterov, Olga A. Zakurdaeva, Natalya A. Sokolova, Pavel V. Rychkov, Vladimir I. Feldman	Radiation Physics and Chemistry, 176, 2020	0969-806X	BAK; Ринц; Web of Science; Scopus	crown-6·YCl3·4.25H2O complexes were synthesized, characterized by FTIR and DSC/TGA analysis and exposed to X-rays irradiation to study their resistance to	Да (если в тексте публикации указано название ЦКП или УНУ)	6

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
23.	1874108	журнале	destruction of macrocyclic component of strontium-selective extractants based on ionic liquids	1172-020-2 906-4].	S. V. Nesterov, O. A. Zakurdaeva, M. A. Kochetkova, I. O. Kuchkina	Russian Chemical Bulletin, 69, 2020	1573-9171	BAK; Ринц; Web of Science; Scopus	dicyclohexano18-crown-6 (DCH18C6) in ionic liquids containing the bis(trifl uoromethylsulfonyl)imide anion (NTf2 -), we synthesized stereoisomeric DCH18C6•Sr(NTf2)2 complexes as a model of the strontium-containing macrocyclic component of this system and studied the mechanism of their destruction in the solid phase. Three main stages of radiation-chemical transformations were found. At the initial stage of radiolysis after ionization of the complex components, a positive charge is transferred from the macrocycle to the anion, which is induced by the lower ionization potential of NTf2 - as compared to the crown ether. This results in the radiation protection of the macrocycle due to the blockage of the polyether ring cleavage, which is observed under radiolysis of "free" DCH18C6. The next stage consists in the accumulation of the —O—•CH—CH2— radicals caused by the reaction of the dissociation products of the NTf2 - anion with the crown ether. It intensifies the radiation destruction of the polyether ring. At the fi nal stage, the macrocyclic radicals efficiently scavenge SO2, the molecular product of dissociation of the NTf2 - anion, with the formation of sulfonyl-type radicals. The discovered channels of radiation-chemical transformations of the macrocycle in the systems including the NTf2 - anion should be considered in the design of new radiation-resistant extractants.	Да (если в тексте публикации указано название ЦКП или УНУ)	1334
24.	1874522	научном журнале	Ring-opening polymerization of octamethylcyclotetr asiloxane using 3d metal trifluoroacetate complexes	encom.202 0.01.014	Fedor V. Drozdov, Tatyana Yu. Glazunova, Nikita L. Shikut', Nina V. Demchenko, Ekaterina A. Kurzina и др.	Mendeleev Communications, 30, 2020	0959-9436	BAK; Ринц; Web of Science; Scopus	ring opening polymerization of octamethylcyclotetrasiloxane affords polydimethylsiloxanes whose molecular weight can be controlled by the nature of 3d metal	Да (если в тексте публикации указано название ЦКП или УНУ)	45

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
25.	1874488	научном журнале	Selective formation of 1,5-disodiumoxyhexame thyl-trisiloxane in the reaction of dimethylsiloxanes and sodium hydroxide	rganchem.2	Talalaeva E.V., Kalinina A.A., Vasilenko N.G., Demchenko N.V., Cherkaev G.V. и др.	Journal of Organometallic Chemistry, 906, 2020	0022-328X	BAK; Ринц; Web of Science; Scopus	been isolated in high yield with a purity of up to 98%, by simple interaction of dimethylsiloxanes with sodium hydroxide. The reasons of high selectivity of the reaction	Да (если в тексте публикации указано название ЦКП или УНУ)	11

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
26.	1873743	журнале	silanolate - A versatile route towards new functional 1,2,3-triazole based hyperbranched polyorganoalkoxysil oxanes	eactfunctpo lym.2020.1 04648	Dmitry Migulin, Sergey Milenin, Georgy Cherkaev, Alexey Zezin, Elena Zezina и др.	Reactive and Functional Polymers, 154, 2020	1381-5148	Scopus	branched topological structure of the flexible polysiloxane backbone was synthesized, characterized and exploited for the formation and stabilization of silver nanoparticles. In this study a series of functional 3-azidopropylethoxysiloxanes and poly-1,2,3-triazoleorganoethoxysiloxanes with controlled molecular architectures were synthesized and characterized for the first time using controlled condensation of the new AB2-type sodiumoxo-3-azidopropyldiethoxysilane monomer and the Copper(I)- catalyzed azidealkyne cycloaddition "Click chemistry" process. The new 1,2,3-triazole-based hybrid polymers with a functional hyperbranched polyethoxysiloxane polymer backbone showed the ability to stabilize ultrasmall silver nanoparticles. The synthesized structures were characterized using 29Si NMR, I H NMR, FTIR, Mass-spectrometry, and GPC. Polymer nanocomposites with the stabilized silver nanoparticles were characterized by transmission electron microscopy (TEM).	Да (если в тексте публикации указано название ЦКП или УНУ)	7
27.	1871843	научном журнале	Solid-State Synthesis of Water- Soluble Chitosan-g- Hydroxyethyl Cellulose Copolymers		Tatiana S. Demina, Aisylu V. Birdibekova, Eugenia A. Svidchenko, Pavel L. Ivanov, Anastasia S. Kuryanova и др.	Polymers, 12, 2020	2073-4360	Scopus	ether have been obtained by the solid-state reactive mixing of chitin, sodium hydroxide and hydroxyethyl cellulose under shear deformation in a pilot twin-screw extruder. The	указано	10

	№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
L	1	1A	2	3	4	5	6	7	8	9	10	11
	8.	1873476	научном журнале	Star-shaped benzotriindole-based donor-acceptor molecules: Synthesis, properties and application in bulk heterojunction and single-material organic solar cells. Dyes and Pigments, 108523. doi:10.1016/j.dyepig2020.108523	yepig.2020. 108523	Dmitry O. Balakirev, Yuriy N. Luponosov, Artur L. Mannanov, Petr S. Savchenko, Yury Minenkov и др.	Dyes and Pigments, 181, 2020	0143-7208	Scopus	remains an urgent task to design promising materials for organic solar cells (OSCs) and other electronic devices. Here we report on the	Да (если в тексте публикации указано название ЦКП или УНУ)	

N II,	п	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
	1A	2	3	4	5	6	7	8	9	10	11
29	1874491	научном журнале	Stereoregular cyclic p-tolyl-containing siloxanes as promising reagents for synthesizing functionalized organosiloxanes	rganchem.2 020.121223	Kholodkov D.N., Anisimov A.A., Zimovets S.N., Korlyukov A.A., Novikov R.A. и др.	Journal of Organometallic Chemistry, 914, 2020		Web of Science; Scopus	promising reagents for the synthesis functionalized derivatives. The method is well scalable and allows one to obtain target products on a gram scale (z10 g) in 57e62% yields. The structure of the compounds has been confirmed by complex physico-chemical methods of analysis: IR, ESI-HRMS, GPC, 1D and 2D 1 H, 13C, 29Si NMR experiments, and X-Ray diffraction.	Да (если в тексте публикации указано название ЦКП или УНУ)	4
300	1874444	научном журнале	Synthesis and comparison of the rheological and thermal properties of acyclic and polycyclic forms of polyphenylsilsesquio xane	urpolymj.2	Temnikov M.N., Vasil'ev V.G., Buzin M.I., Muzafarov A.M.	European Polymer Journal, 130, 2020	0014-3057	Web of Science; Scopus	functional acyclic form of polyphenylsilsesquioxane (a-PPSQ) by the Piers-Rubinsztajn reaction of hyperbranched polyphenylethoxysiloxane (PPEOS) with	Да (если в тексте публикации указано название ЦКП или УНУ)	8

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
31.	1874139	научном журнале	Synthesis of guanidinopropyl triethoxysilane and its homopolymer as a new class of organosilicon antibacterial agents	rganchem.2 020.121243	F.V. Drozdov, A.N. Tarasenkov, M.S. Parshina, G.V. Cherkaev, E.N. Strukova и др.	Journal of Organometallic Chemistry, 918, 2020		Scopus	undergoes condensation when heated in water,	Да (если в тексте публикации указано название ЦКП или УНУ)	5
32.	1874530	научном	Synthesis of new siloxane or sulfur containing symmetrical monomers based on carvone	426507.202	Fedor V. Drozdov, Georgij V. Cherkaev, Aziz M. Muzafarov	Phosphorus, Sulfur, and Silicon and the Related Elements, 11, 2020	10426507	Scopus	bonds can be easily prepared by thiol-ene or Michael addition of dithiols. Moreover, hydrosilylation reaction with difunctional	Да (если в тексте публикации указано название ЦКП или УНУ)	892
33.	1874520	научном журнале	Synthesis of New Siloxane-Containing Polyamide Based on Limonene and Comparison of Their Properties with Non-Siloxane Analog	t.20200225 0	Tarasenkov, Maria S. Parshina, Georgii V. Cherkaev, Mikhail I. Buzin и др.	ChemistrySelect, 5, 2020	2365-6549	Scopus	tetramethyl disiloxane, were used as diamines monomers. It was shown that the introduction of a siloxane unit into the structure of a polyamide chain increases the molecular weight and thermal stability of the polymer (more than 300°C), and also affects its phase behavior at room temperature.	тексте публикации указано название ЦКП или УНУ)	11539
34.	1873821	научном	Synthesis of siloxane nanogel with phenylboronic functional groups	426507.202	Sergey A. Milenin, Fedor V. Drozdov, Ivan B. Meshkov, Aziz M. Muzafarov	Phosphorus, Sulfur, and Silicon and the Related Elements, Phosphorus, Sulfur, and Silicon and the Related Elements, 2020	1042-6507	Scopus	phenyl borate functional groups was obtained consistently by condensation of the sodium salt of methyltriethoxysilane in acetic acid and further functionalization with 4,4,5,5-	Да (если в тексте публикации указано название ЦКП или УНУ)	2

№ п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
1	1A	2	3	4	5	6	7	8	9	10	11
35.	1874059	журнале	Tetrahedral Silicon- Centered Dibenzoylmethanato boron Difluorides: Synthesis, Crystal Structure and Photophysical Behavior in Solution and Solid State	u.20190073 2	Yuriy N. Kononevich, Maxim N. Temnikov, Alexander A. Korlyukov, Alexander D. Volodin, Pavel V. Dorovatovskii и др.	ChemPlusChem, 85, 2020	2192-6506	индексируется	difluoride (DBMBF2) were synthesized and characterized. Their structural and optical features both in solution and solid state were investigated using X-ray crystallography, steady and time-dependent spectroscopy, and DFTbased calculations. In dilute solutions, the molar absorption coefficient increases with increasing the number of DBMBF2 fragments in a molecule from 40500 to 175200 M-1cm-1, while, in contrast, the nonradiative rate constant of fluorescence decay decreases from 0.49 to 0.34. In the solid state, absorption and emission spectra depend on the degree of crystallinity and microcrystal size. Tris-DBMBF2 derivative forms fully overlapping dimeric structures exhibiting excimer-like fluorescence, which is well predicted by the quantum-chemical calculations. Mono-DBMBF2 derivative exhibits fully reverse mechanofluorochromic behavior.	Да (если в тексте публикации указано название ЦКП или УНУ)	9
36.	1873478	научном журнале	Triphenylamine- based luminophores with different side and central aromatic blocks: Synthesis, thermal, photophysical and photochemical properties	yepig.2020. 108397	Yuriy N. Luponosov, Alexander N. Solodukhin, Dmitry O. Balakirev, Nikolay M. Surin, Eugenia A. Svidchenko и др.	Dyes and Pigments, 179, 2020	0143-7208	Scopus	side aromatic blocks were designed and synthesized. Various properties of the	Да (если в тексте публикации указано название ЦКП или УНУ)	9

Nº п/п	ID	Вид публика ции	Наименование публикации	DOI публикац ии	Автор(ы)	Издание, номер, год	ISSN / ISBN издания	Индексация издания	Краткое описание научных результатов, полученных на оборудовании ЦКП	Наличие в публикации ссылки на ЦКП	Страница , содержащ ая ссылку на ЦКП
37.	1A 1873815	научном журнале		rganchem.2	5 Sergey A. Milenin, Fedor V. Drozdov, Elizaveta V. Selezneva, Sofia N. Ardabevskaia, Mikhail I. Buzin и др.	ISSN: 0022-328X Journal of Organometallic Chemistry, 907, 2020	7 0022-328X	Scopus	polydimethylsiloxanes containing a rigid segment based on N,N-(ethane-1,2- diyl)diundec-10-enamide in the main chain were synthesized by hydrosilylation	Да (если в тексте публикации указано название ЦКП или УНУ)	7
38.	1871831	научном журнале	Water-soluble copolymer compositions of polysaccharides for electrospinning of biomaterials	pr.2019.12.	Tatiana Akopova, Tatiana Demina, Pavel Ivanov, Tikhon Kurkin, Galina Goncharuk	Materials Today: Proceedings, 0, 2020	2214-7853	Scopus	hydroxyethylcellulose and polyvinyl alcohol were synthesized through solid-state reactive blending under shear deformation in twin- screw co-rotated extruder. Structure of the	Да (если в тексте публикации указано название ЦКП или УНУ)	3

 $ar{\ }$ ______ (Городов В.В.)